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Supplementary Figure 1 

Cue responses in data and model. 

a: Comparison of cue responses of the clustered network with those published in Ref.10 (right-most bar). Shown are the peak firing rate 

responses for different values of cue-induced spatial variance   . b: Data from different sensory modalities together with across-

modalities average in the rightmost bar from Ref.10 c: same as a for the homogeneous network with       . Peak responses ( PSTH, 

mean s.e.m. across neurons from n=20 simulated networks, 50 neurons/network were randomly sampled; dots represent single 

neurons) were computed as the difference between the peak activity post-cue and the average activity pre-cue. Single neuron 

responsiveness was defined via a change-point analysis (see Methods). In the data, PSTH modulation in cue-responsive neurons was 

consistent across modalities (excited responses peaked at        spks/s, inhibited responses peaked at      0.3 spks/s). In the model, 

cue responses depended only slightly on the cue-induced modulation of the spatial variance    (expressed in percent of baseline; see 

panel a), and were in quantitative agreement with the data over a wide range of parameters. When      , cue responses were: in the 

clustered network model (see Fig. 1a-c of the main text),          spks/s (excited) and          spks/s (inhibited); in the 

homogeneous network (panel c, see Fig. 1d-f of the main text), cue responses had average peaks          spks/s (excited) and 

         spks/s (inhibited, significantly different from Data, two-sided t-test, p=0.04). Panels a and c: two-sided t-test with multiple 

comparison Bonferroni correction, *=p<0.05; n.s.=non-significant. “Data” in panels a and c is the same as “Average” in panel b. 



 

 
 

Supplementary Figure 2 

Model neurons with no cue response. 

Raster plots and PSTH (pin curves) of representative single neuron responses to cue and one stimulus in expected trials in the clustered 

(a) and homogeneous (b) networks. Top row: non-responsive neurons. Bottom row: neurons that are stimulus-responsive but not cue-

responsive. A neuron was deemed responsive if the PSTH was significantly different from baseline (pink horizontal bars: p<0.05, two-

sided t-test with multiple-bin Bonferroni correction). The PSTHs report mean s.e.m. firing rate across 20 simulated trials with the same 

stimulus. 



 

 

Supplementary Figure 3 

Classification algorithm used for population decoding. 

a: Stimulus decoding is accelerated in the presence of the anticipatory cue. Here we show that similar results are obtained when 

considering the decoding accuracy for single tastes separately. a: Schematics of the decoding algorithm: The colored curves represent 

the temporal evolution of neural activity across N simultaneously recorded neurons. The four colors label trajectories obtained with 

four different stimuli (tastants). Hues help visualize the time course within each trajectory. Each time bin of activity (black dots) was 

decoded using an independent classifier. Within each condition (‘expected’ or ‘unexpected’), decoding performance was assessed via a 

cross-validation procedure, yielding a confusion matrix whose diagonal represents the accuracy of classification for each taste in that 

time bin. b: Time course of decoding accuracy in expected (dashed curves) vs. unexpected (full curves) conditions for each individual 

tastant (left, color-coded) and for the across-taste average (right). The left panel demonstrates coding anticipation for each tastant 

separately. Color-coded horizontal bar represents significant difference between decoding accuracy in expected vs. unexpected trials, 

p<0.05, two-sided t-test with multiple bin Bonferroni correction (notations as in Fig. 1c of the main text). 



 

 

Supplementary Figure 4 

Firing-rate coding of expectation. 

Stimulus coding could accelerate if the cue increased the firing rate of the stimulus-selective neurons compared to the non-selective 

neurons. Here we show that coding anticipation in the clustered network is not driven by such cue-induced changes in firing rate 

selectivity. To prove this point, we estimated the time course of the firing rate difference r between stimulus-selective and nonselective 

neurons in the expected (pink) and unexpected (blue) conditions in the clustered and homogeneous networks. We found no difference 

in r between conditions in the clustered network (a), demonstrating that anticipatory activity is not driven by changes in firing rates. 

In the homogeneous network (b), r was larger in the unexpected condition, in agreement with the reversed trend in coding speed 

found in Fig. 1f. Panel b: black horizontal bar: p<0.05, two-sided t-test with multiple bin Bonferroni correction. Both panels: main curves 

represent means of r over 20 sessions; shaded area represents s.e.m. 



 

 
 

Supplementary Figure 5 

Robustness of anticipatory activity. 

a: Anticipatory activity is present in the case of step-like stimuli (top: time course of stimulus as a fraction of baseline afferent current; 

bottom: time course of decoding accuracy; notations as in Fig. 1c of main text). Inset: aggregate analysis across n=20 simulated networks 

of the onset times of significant decoding (mean s.e.m.) in expected (pink) vs. unexpected trials (blue) shows significantly faster onsets 

in the expected condition (two-sided t-test, p=4.0x10-4).  b: Anticipatory activity did not depend on the number of stimuli presented to 

the network. Latency of significant stimulus decoding was faster in expected (pink) compared to unexpected (blue) trials with up to 16 

stimuli (clusters were selective to a given stimulus with 50% probability; error bars represent mean s.e.m. across n=20 simulated 

networks). c: Anticipatory activity was present in the case of step-like cue with spatial variance =20% and a linearly ramping stimulus 

as in main Fig. 2a (top: time course of stimulus as a fraction of baseline afferent current; inset notations as in panel a: two-sided t-test, 

p=1.5x10-4). d: Anticipatory activity was present even with overlapping clusters33. In this model, neurons had a probability f=0.06 of 

belonging to one of the Q=14 clusters, with a fraction of   (   )    neurons belonging to any set of k specific clusters and E-to-E 

synaptic connections given by        (      (     )  ). Here, pEE=0.2 is the connection probability;    are the synaptic weights 

values sampled from normal distributions with means    and variances     
 , respectively ( =0.01). The synaptic weights were 

potentiated with probability      
   

          
, where         

 
  
   
  is the number of clusters in common between neurons i and j (  

    

if cluster k contains neuron i and   
    otherwise), while         

 
  
 (    

 ), with =2.75 (see Ref.30 for more details on this model). 

The E-to-I, I-to-E, and I-to-I connection probability, the stimuli and the anticipatory cue were the same as for the clustered networks 

(Table 1 in the main text). The remaining parameters of the network are reported in Table S1 (inset notations as in panel a: two-sided t-

test, p=1.1x10-3). Main panels: *=p<0.05, **=p<0.01, ***=p<0.001, post-hoc t-test with Bonferroni correction. Horizontal black bar, p<0.05, 

two-sided t-test with multiple-bin Bonferroni correction. Insets: **=p<0.01, ***=p<0.001, two-sided t-test. 



 

 
 

Supplementary Figure 6 

A distracting cue slows down stimulus coding (model). 

To show that the anticipatory effect of our model cue is specific, we give here an example of a manipulation leading to the opposite 

effect. Specifically, if the cue is modeled as an increase in the mean input current to the inhibitory population (we refer to such a cue as 

a “distractor”), stimulus decoding is slowed down rather than accelerated. As we show in the following panels, the coding delay 

following such “distracting cue” is the consequence of increased energy barriers (panel d) causing slower transition dynamics. In turn, 

this is due to the sharpening of the effective transfer functions of the excitatory neurons, reflecting increased stability induced by the 

increased inhibition. a: Schematics of clustered network architecture and stimulation (notations as in Fig. 1a of the main text, here the 

cue targets the inhibitory neurons). b: Time course of cross-validated decoding accuracy during distracted (brown) trials was slower 

than during unexpected (red) trials (notations as in Fig. 1c). Inset: aggregate analysis across n=20 simulated networks, mean s.e.m.; 

two-sided t-test, p=1.3x10-3). c: Activation latency of stimulus-selective clusters after stimulus presentation was delayed during 

distracted trials (mean s.e.m. across n=20 simulated networks, two-sided t-test, p=1.5x10-13). d: Mean field theory of simplified 2-cluster 

network (notations and model as in Fig. 4c, lighter brown denotes stronger stimuli). Left panel: the transition probability from the non-

coding (right well) to the coding state (left well) increased with larger stimuli. In ‘distracted trials’ (dashed curves) the barrier height  

from the non-coding to the coding state is larger than in unexpected trials (full curves), leading to slower coding in the distracted 

condition. Right panel: effective energy barriers as a function of stimulus intensity, with (full lines) and without the cue (dashed). Panels 

b and c: **=p<0.01, ***=p<0.001, two-sided t-test. 



 

 
 

Supplementary Figure 7 

Specificity of anticipatory activity (part 1). 

We compared our spatial variance model (a, see Fig. 1a-c and Fig. S1a for notations) to alternative models where the anticipatory cue 

modulates the feedforward couplings      (b) or the recurrent couplings     (c). All models had the same architecture and cue temporal 

profile of the main clustered network model (top row panels). In the alternative models, the cue targeted all clustered E neurons. 

Models were scored on the ability to match the experimental data on typology of cue response and amount of stimulus-coding 

anticipation. Cue responses were quantified as the  PSTH = peak cue response – baseline firing rate as in Fig. S1 (bottom left panels; 

green: excited neurons, red: inhibited neurons;  PSTH, mean  s.e.m. across neurons from n=10 simulated networks, 50 

neurons/network were randomly sampled; dots represent single neurons), while coding anticipation was assessed via latency of 

stimulus decoding (bottom right panels, notations as in inset of Fig. 1c; aggregate analysis across n=10 simulated networks of the onset 

times of significant decoding (mean s.e.m.) in expected (pink) vs. unexpected trials (blue)). In the feedforward coupling model (b), the 

cue was a time-dependent modulation of the external synaptic coupling         , identical for all clustered excitatory neurons. Cue 

responses were heterogeneous but significantly different from the experimental data (bottom left, two-sided t-test; excited responses: 

10% with p=6.3x10-12, 20% with p=4.0x10-3, inhibited responses: 10% non-significant, 20% with p=0.01); coding anticipation was absent 

for either moderate or strong positive modulations (10%-20% above baseline; bottom right). For negative cue modulations, only 

inhibited cue responses were observed and no coding anticipation was present (not shown). In the recurrent coupling model (c), the cue 

was a time-dependent modulation of the E-to-E recurrent coupling strength    . For negative     modulation (the more likely to 

produce a faster dynamics), coding anticipation was present (bottom right, two-sided t-test; 10% with p=0.0039, 20% with p=0.004), 

however, peak cue responses were strongly inhibited over a wide range of parameters, thus incompatible with the empirical data 

(bottom left, two-sided t-test; excited responses: 10% with p=0.01, 20% with p=0.0097, inhibited responses: 10% with p=6.9x10-6, 20% 

with p=2.9x10-6). We obtained similar results after decreasing the spike thresholds of the excitatory neurons (down to -30%, not 

shown). Increasing the thresholds of inhibitory neurons had no significant impact on the behavior of the model (up to 30%, not shown). 

For positive     modulation (not shown), coding anticipation was absent and cue responses were mostly excited. Non-modulated 

network parameters were as in Table 1 (all panels). All panels: two-sided t-test, *=p<0.05, **=p<0.01, ***=p<0.001. 



 

 
 

Supplementary Figure 8 

Specificity of anticipatory activity (part 2). 

We compared our model (a, see Fig. 1a-c and Fig. S1a) to an alternative model where the anticipatory cue modulates the background 

synaptic input, driving a simultaneous increase in background noise and shunting inhibition as in Ref59 (b-c). The baseline noise level 

was modeled after an Ornstein-Uhlenbeck process with zero mean and variance              , where     was the mean afferent 

current. The cue increased the background noise by a factor X:     
        

  while shunting the membrane time constant by a factor 

1/X:         (we refer to Ref.59 for details). Both modulations followed the same double exponential time course of the spatial 

variance model of the main text (top panels in b-c). b: With even a moderate factor of X=1.5, the cue induced mostly inhibited cue 

responses (bottom left panels; green: excited neurons, red: inhibited neurons; PSTH, mean s.e.m. across neurons from n=10 simulated 

networks, 50 neurons/network were randomly sampled; dots represent single neurons), significantly different from the experimental 

data (two-sided t-test; excited responses: n/a; inhibited responses: p=1.9x10-5) and no anticipation (bottom right, aggregate analysis 

across n=10 simulated networks of the onset times of significant decoding (mean s.e.m.) in expected (pink) vs. unexpected trials (blue); 

two-sided t-test, non significant) due to the strong shunting effect on the network dynamics, leading to a strong reduction of excitability 

in the clusters. At X=2, excitatory neurons were transiently silenced (not shown). c: In an effort to obtain a fair comparison with the 

spatial variance model, we reduced the shunting effect (using peak value     
 , with X=1.5 and  =1/4) while keeping the same amount 

of background noise. In this case, cue responses were more similar to the data (two-sided t-test; excited responses: p=1.5x10-7; inhibited 

responses: n/a), but coding slowed down compared to the unexpected condition (bottom right, two-sided t-test, p=0.015). All panels: 

two-sided t-test, *=p<0.05, **=p<0.01, ***=p<0.001. 



 

 
 

Supplementary Figure 9 

Specificity of anticipatory activity (part 3). 

In the alternative model where the cue modulates the background synaptic input (Fig. S8), we explored the parameter space by 

independently scaling background noise, shunting, and mean afferent current      (transiently increased with the same time course as 

the other quantities to counteract the shunting effect, see top panels in Fig. S8b-c), but found that coding anticipation was never present 

(bottom row). We concluded that a model cue inducing an increase in background synaptic activity did not lead to anticipatory activity. 

a: PSTH for X=1.5 (full bar: excited neurons; dashed bar: inhibited neurons; PSTH, mean s.e.m. across neurons from n=10 simulated 

networks, 50 neurons/network were randomly sampled; dots represent neurons with excited (green) and inhibited (red) responses); b: 

decoding latency (aggregate analysis across n=10 simulated networks of the onset times of significant decoding (mean s.e.m.) in 

expected trials; dashed blue line: coding latency in unexpected trials, mean s.e.m.) as a function of the scaling parameter X for the 5 

scaling regimes shown in a (same color code). Color code: Black,     
        

                     (same as in Fig. S8b); Dark grey, 

    
        

         
 

              ; Light grey,     
        

                      ; Dark brown:     
         

       

             
 

 ; Light brown:     
        

                    
 

  (same as in Fig. S8c). Panel a, two-sided t-test: *=p<0.05, 

**=p<0.01, ***=p<0.001. 

 



Supplementary Table S1 
 
  Alternative models  

Modulation Spatial Var. Ffwd. ( !"#$) Rec. (!&&) Backgr. Syn. Input 

Anticipation Yes (robust) No Yes No 
Cue responses Yes (robust) No No Yes (fine tuned) 

Figure S1-S4 S7b S7c S8-S9 
 
Comparison of the performance of alternative models of the anticipatory cue. First row 
(“Modulation”) reports the type of modulation due to the cue (feature defining the model 
as described in captions of Supplementary Figures 7-9). Second row (“Anticipation”) 
reports the presence (Yes) or absence (No) of coding anticipation. Third row (“Cue 
responses”) reports whether the DPSTH is compatible (Yes) or not (No) with the empirical 
data. Last row: Supplementary Figure where the corresponding result is shown. 
	



Supplementary Table S2 
 
Symbol Description Value 
jEE Mean E-to-E weights × " 1.4 mV 
jEI Mean E-to-I weights × " 5.0 mV 
jIE Mean I-to-E weights × " 2.5 mV 
jII Mean I-to-I weights × " 6.1 mV 
jE0 Mean afferent synaptic weights to E neurons × " 7.3 mV 
jI0 Mean afferent synaptic weights to I neurons × " 6.5 mV 
J+ Potentiated intra-cluster E-to-E weights factor. 10.5 
rEext Average afferent rate to E neurons (baseline). 5 spks/s 
rIext Average afferent rate to I neurons (baseline). 7 spks/s 
VEthr E neuron threshold potential. 3.6 mV 
VIthr I neuron threshold potential. 5.7 mV 
Vreset E and I neurons reset potential. 0 mV 
tm E and I membrane time constant. 20 ms 
tref Absolute refractory period. 5 ms 
tsyn E and I synaptic time constant. 4 ms 

 
Parameters for the network with overlapping clusters with N=2000 LIF neurons (See 
Supplementary Fig. S5d for details). 
	


